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There is a growing interest in the evolutionary role of inversions and 
other types of chromosome rearrangements, with several recent re-
view papers (e.g., Faria et al., 2019; Huang & Rieseberg, 2020; Kapun 
& Flatt, 2019; Wellenreuther & Bernatchez, 2018) and a special issue 
of Molecular Ecology devoted to this topic (Wellenreuther et al., 2019, 
and references therein). As these papers have pointed out, there are 
multiple ways in which natural selection can act on inversions. In 
order to discriminate between different hypotheses, it is necessary 
to have a clear understanding of their observable consequences. 
Unfortunately, there appears to be a serious misconception about 
one process that has been proposed as providing a selective advan-
tage to an inversion. This involves Dobzhansky's (e.g., Dobzhansky, 
1949, 1950, 1951) concept of “coadaptation” among polymorphic 
loci that interact in their effects on fitness, an idea that traces back 
to Fisher (1930, pp. 102–104).

In its simplest form, this model invokes two loci, A and B, each 
segregating for a pair of alleles (A1 vs. A2, B1 vs. B2) in a diploid, ran-
domly mating population. Assume that the fitness effects of the two 
loci are epistatic, in the sense that the fitnesses of the nine possi-
ble diploid genotypes at the two loci deviate from those predicted 
by additive combinations of the effects of the alleles at each locus 

(Fisher, 1918). It is then possible for linkage disequilibrium (LD) to 
be maintained at a stable equilibrium in the face of recombination, 
where both loci are polymorphic, and fitter combinations of alleles 
are in excess of the frequencies expected by randomly combining 
alleles according to their frequencies (Fisher, 1930; Karlin, 1975; 
Kimura, 1956; Lewontin & Kojima, 1960). There is then selection for 
modifiers that reduce the rate of recombination between the two 
loci (Feldman, 1972; Fisher, 1930; Kimura, 1956). The same princi-
ple applies to more general multilocus systems in randomly mat-
ing populations (Charlesworth, 1976; Zhivotovsky et al., 1994), but 
not necessarily to partially inbreeding populations (Charlesworth 
et al., 1979). In particular, an inversion that arises on a haplotype 
that is present in excess of random expectation (and is thus fitter 
than average) experiences a selective advantage if recombination 
is suppressed in heterozygotes for the inversion, simply because 
the inversion maintains its association with a high-fitness genotype 
(Kimura, 1956; Charlesworth & Charlesworth, 1973).

The misconception is that this process causes the inversion to 
spread to fixation, implying that it cannot explain the balanced in-
version polymorphisms that have been the subject of so much re-
cent attention. This claim appears to have originated in table 1 of 
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Abstract
Several recent publications have stated that epistatic fitness interactions cause the 
fixation of inversions that suppress recombination among the loci involved. Under 
this type of selection, however, the suppression of recombination in an inversion het-
erozygote can create a form of heterozygote advantage, which prevents the inversion 
from becoming fixed by selection. This process has been explicitly modelled by previ-
ous workers.
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Kirkpatrick and Barton (2006), and has been repeated in review 
papers by Hoffmann and Rieseberg (2008), Kapun and Flatt (2019) 
and Huang and Rieseberg (2020). However, it overlooks the fact 
that crossing over is suppressed only in inversion heterozygotes, 
so that the selective benefits of recombination suppression confer 
a heterozygote advantage to the inversion, and hence prevent its 
fixation. This scenario was first modelled by Kimura (1956) and ex-
amined in more detail by Charlesworth (1974), who showed that the 
exchange of alleles among inverted and standard arrangements by 
gene conversion or double crossing over does not prevent the estab-
lishment and maintenance of an inversion polymorphism when there 
is epistatic selection. An example of this mechanism for maintaining 
inversion polymorphisms is provided by the epistatic interactions 
among the different components of segregation distorter systems, 
and probably explains the frequent association of such systems with 
inversions (Fuller et al., 2020). Direct effects of inversions in causing 
segregation distortion should, therefore, not be assumed without 
further evidence. Of course, there are processes other than epistatic 
selection that can select for inversions, as described in the reviews 
cited above, and we do not mean to imply that epistatic selection is 
necessarily involved in the maintenance of inversion polymorphisms.
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